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SYMBOLS

column matrix consisting of the coordinates of the position vector

in the x-basis

change in a coordinates between measurements, a 3 x 1 column
matrix

range-difference measurements

orthonormal triplet

column matrix consisting of a triplet of ¢ vectors
jk element of F!

Grammian of x X a 2 x 2 matrix

1’ 72

Grammian of x;,X,, X3, a 3 x 3 matrix

jk element of G !

1 1

3 x 4 matrix consisting of T - and row sum of T

vectors from corresponding reference points to vehicle position

4 x 1 matrix consisting of product of measurement and the
corresponding error in the same measurement

2 x 1 column matrix consisting of the first two elements of
matrix a

reference points

vehicle position

position vector of vehicle

change in position vector between different time of measurement

projection vector; a column matrix consisting of r . x,, v . Xx

(1) L

and T - x3 for simultaneous measurement or of r © X7,
r(z) < Xg, r(3) © Xg for nonsimultaneous measurements

linear transformation between the x and c bases, a 3 x 3
matrix

k7 element of 71
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XysX,,Xg

cov( )
d()
s( )
()
() - Q)
()

Vi

column matrix consisting of displacement in the w coordinates
to account for vehicle motion between measurements

column matrix consisting of coordinates of the position vector
change in w coordinates between different time of measurements
column matrix consisting of a triplet of Xx vectors

position vectors of corresponding reference points

2 x 1 column matrix consisting of the first two elements of the
projection vector r - X

3 x 1 matrix consisting of coordinates of x, expressed in the
x basis

coordinates of X, expressed in the x basis

angle between line of sight with respect to the horizon;
numerically positive if measured in the counterclockwise
direction

longitude of vehicle

latitude of vehicle

length of vector Xy

length of position vector r

Operators
cosine of ()
covariance of ( )
derivative of ()
sine of ()
transpose of a matrix
inner product of two vectors

inverse of a matrix
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Superscripts and Subscripts
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i and j, unless specified
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A UNIFIED FORMALISM FOR POSITION DETERMINATION
FROM VARIQUS NAVIGATION MEASUREMENTS
Homer Q. Lee

Ames Research Center

SUMMARY

A new computational technique has been developed for coordinate determina-
tion of moving vehicles. This technique is applicable to a wide class of
measurements, such as range, range rate, angle, distance sum, distance dif-
ference, or combinations of these. The generality of the method and the sim-
plicity of the required computation make the technique ideally suitable for
navigation of aircraft or spacecraft.

Coordinate determination by the new technique proceeds in the following
sequence. First, a vector quantity called the projection is computed by
simple arithmetic operations on the given measurements. Second, a matrix is
constructed that depends only on some chosen Cartesian coordinate system and
on the location of the reference points to which measurements are being made.
Then the coordinates of the vehicle in the chosen Cartesian system are
obtained by multiplication of this matrix by the projection vector. The com-
puted Cartesian coordinates of the vehicle can readily be converted into lon-
gitude and latitude. A further advantage of this technique is that errors in
measurements are related directly to errors in computed coordinates by the
same matrix.

Different types of measurements affect only the method of constructing
the projection vector. In this report, construction of the projection vector
for range measurements, angle measurements, distance-sum measurements, and
distance-difference measurements is explicitly carried out. It was found that
the number of measurements, and not the type of measurements, determines the
uniqueness of the solution. For instance, four measurements, be they range,
range rate, etc., determine the position uniquely, whereas three measurements
always yield two solutions to the coordinate-determination problem. In all
cases, multiple solutions, if present, are exhibited in the process of con-
structing the projection.

INTRODUCTION

The fundamental problem in navigation is determining the position of a
vehicle by means of measurements relative to known points of reference. Many
types of measurements can be used. Measurements of range, range rate, angle,
and differences in distance are commonly employed. Position is determined by
processing these data in an appropriate manner.



The analytical methods used to process the data are as varied as the
measurements themselves. In one method (refs. 1, 2) position is established
from the solution of simultaneous quadratic algebraic equations. Another
method (ref. 3) has the desirable quality of expressing the coordinates of
position explicitly in terms of measured and known quantities, but requires
many trigonometric operations that consume a considerable amount of computa-
tion time. Furthermore, this method is restricted because it assumes that the
reference points lie in the equatorial plane. Still another method (ref. 4},
to be used with measurements of distance differences, requires an iterative
process or spherical trigonometry. This method too is restricted by the
assumption that the reference points and the vehicle whose position is to be
determined lie at the same altitude.

The purpose of this report is to develop another method of processing the
measurements. This method relies on linear algebra to yield a single formal-
ism by which any of the usual measurements can be processed but is not limited
to special navigation situations. Thus, it can be used to determine the posi-
tion of space vehicles as well as ships and airplanes. It relates the desired
position parameters directly to the measured quantities through a transforma-
tion whose terms are already known.

The idea of the method is very simple and is given in the first section
below. Any navigation system relies on the use of known points of reference
for making measurements and on the existence of a standard coordinate system
for expressing the position of the vehicle. The reference points form a basis
for a coordinate system and the position of the vehicle is given in this basis
by the various possible measurements. The reference points are said to be
known in the sense that their positions are established in terms of the stan-
dard coordinate basis. Hence the same transformation that relates the basis
formed by the reference points to the standard also relates the measurements
to the desired standard expression for vehicle position. The difference
between the various navigation schemes is shown to reduce to different modes
of expressing the vehicle's position in the reference basis.

The basic scheme works if a set of measurements is made essentially at the
same time and if the set is sufficient to determine position uniquely. The
modification to the scheme needed to account for motion of the vehicle between
measurements is shown to be minor. A more significant modification is then
developed for the common case where the measurements do not uniquely specify
the vehicle's position, but determine it only to within a choice of sign.

Once this modification is given, the usual navigation systems can be treated.

Since the formalism developed in this report separates the measurements
and the transformation between the reference and the standard bases, measure-
ment errors are similarly separate. The final section of the report develops
this condition to show how the covariance of position determination and of
measurement errors are related by a precomputable transformation.



DESCRIPTION OF THE BASIC PROCEDURE

The basic formalism for position determination can most easily be
developed by reference to the situation illustrated in sketch (a). Three
reference points, Py, Py, and P3, and
their positions are located relative to
an origin 0, say the center of the
earth, by the vectors xi1, X, and xg3.
The vehicle's position R is located by
the vector r from O. The vectors .7,
l,, and 13 1locate R relative to the
three reference points. Not illustrated
are three unit vectors c¢j;, cy, and cjg
forming an orthonormal triplet at O.
These vectors form the basis of the stan-
dard coordinate system; for example, cj
pointing north from the center of the
earth, c¢; 1lying in the equatorial plane,
and together with c¢g3, determining the
Greenwich meridian.

Since the x's and c's are sets
' of independent vectors, the following
Sketch (a) relations hold:

P

r=atx = w'e (1)
Here the bar over x and ¢ indicate that these quantities are triplets of
vectors. The a and w are triplets of scalars. The superscript t denotes
transpose. The a's will be seen to be related to the measurements, and the
w's are the desired coordinates of the point R. Written out more fully,
equation (1) appears as

T = a)X) + asXo + azXz = WjC) + WpCo + W3C3y
The two bases, the vector sets x and ¢, are related by a linear transforma-
tion
x = Tc (2)
The elements in the kth row of T, k = 1,2,3, are the coordinates of xy
expressed in the c-basis. If the reference points are known points on the
earth, then the elements of T are fixed numbers. If they are moving points,

such as satellites, then the ty; are known functions of the ephemerides.
The relation between a and w 1is

aT=w ; w="Ta (3)
-t .
Writing equation (1) in the form r X a, one obtains

- - -t
r.x=Xx-+Xxa-=0Ga (3]



where r - X is the (column) vector (r . X3, T « Xp, T - X3)t, G 1is the
so-called Grammian X - X , and can be written in matrix form

_)'(1-)(1 X9 - X3 X3 + X1
- -t
X « X =1X1 = X2 Xy « X9 X3 + X9
X1 + X3 Xp + X3 X3 - X3

Reference to sketch (a) gives rise to the following equations:
t t 2 2 2
(r - Xk) (r - Xk) = Zk Zk =P + Ek - 21‘ M X-k = >\k 3 k = 1, 2, 3

wbere p? =1 - TS Ekz = Xy * Xi; and Akz = Zk . Zk. Solving for r - X
gives the equation

ToX S %{?2 + 52 - 7] (5)

In order to illustrate the formalism simply, consider an example in which the
values of the A are given by measurements of range, and in which the alti-
tude p of the vehicle R 1is known. Since the ¢g are the lengths of the
vectors to the reference points, they are known. Hence, the right-hand side

of equation (5) can be evaluated.

Equations (3) and (4) yield the equations

w=Ta=TG (r - x) (6)

Now the Grammian can be expressed in the following way

--t

- __t
G = XX = Tee TC = TT*

or

¢! = (rrH! (7)

-t
because cc is equal to the identity matrix. Using equations (6) and (7),

then, one obtains the equation

we=TH '@ . ) =T r - ) (8)

Equation (8) is the desired result. It shows that the desired coordinates of
the vehicle w are related to the measurements contained in what will be



referred to as the projection vector r - x by a linear transformation whose
elements are already known. The coordinates of the vehicle can be expressed
in many ways using the wy. If its position is to be expressed in terms of
latitude A, and longitude A., for example, and the standard coordinate is

. . as T’
the Greenwich meridian, then

-1 w2 -1 w
Ay = tan —_ A = tan

w r 2 2
1 /{«11 + w2

In any case, the wj are given in equation (8) by using only arithmetic opera-
tions. Furthermore, the procedure summarized by equation (8), although
developed with the simplest navigation situation in mind, will be shown to

hold whenever four independent measurements are given at a time. By the modi-
fications to the procedure discussed next, any of the usual navigation mea-
surements can be related to desired coordinate expressions in a unified way.

MODIFICATIONS TO THE BASIC PROCEDURE

Nonsimultaneous Measurements

In deriving the changes to be made to equation (8) when the measurements
are not given simultaneously, one should keep in mind an example similar to
that already used. Thus, three fixed reference points are assumed to be given
and range measurements taken with respect to them. If an airplane is the
vehicle from which the measurements are made, its motion between range measure-
ments is assumed to be measured. The range measurements are made in the order
1, 2, then 3. Position will be determined as of the time of the last measure-
ment. Quantities will be indexed as to the time of measurement by a super-
scripted number in parentheses. Then the position of the vehicle at the
various times can be written:

r(l) =1 - Ar(l) = a'x - Aa(l)ti = whe - Aw(l)tE
T £ R S P LS SRS €D A r (9)
r(3) = 7 - ati - wta J

. . . t - - .
As in the previous section, a X wtc and x = Tc. Hence, equations (9)

can be written in the form



(1) _ Lt a0t

r a

o R IO (10)
t- -t

T =ax=xa

The projection vector for this case is similar to that given before:
-5t 1
(r - x} = (r( ). X1, r(z) © Xp, T ¢ X3)
The terms on the right are given by

k 1
r() © Xy ___5 (ka + gkz _ }\kZ)

wherein the ¢y are known, and the pj and Ak are measured. Then equa-
tion (10) can be written in the form

T-X=Xxxa-vV (11)

t .
Here v = (v, vy, v3) and v; can be written as

vy = am T X1
= Awl(l)cl + sz(l)cz + AW3(1)C3> © (tyzcy + typcy + tyzcs)
= t_. Aw, i =1, 2, 3
1] J J

Hereafter, whenever a subscript is repeated it means summation and unless
specified j =1, 2, 3, that is,

3
. . = . Aw.
tlJ AwJ Z_: t1J wJ
J=1
The tlk’ k =1, 2, 3 are the elements in the first row of the known trans-

formation matrix T. The three values Aw (1) refer to the measured motion
of the airplane between times (1) and (3). The component v, is similarly
expressed as



The third component v3 1is zero. Using equations (6) and (7) one can write
equation (11) as

- -_t -1
r - x = Tcc Tt(Tt) w-vs=Tw -V

Solving for w, one gets

w=T1l(x X+ v) (12)

Equation (12) differs from equation (8) only by the additional term which
modifies the projection vector by adding the motion of the aircraft between
the times when range is measured.

Indirect Expression

Equation (12) shows that the procedure for expressing the position of the
vehicle in a desired coordinate system, when the measurements are not made
simultaneously, is nearly the same as that when all the measurements are made
at once. The desired coordinates are expressed directly in terms of the mea-
sured quantities. This direct expression was shown to arise when range mea-
surements are made to three independent reference points and the altitude of
the vehicle is known (or measured). It will be shown later that this form
holds whenever four independent measurements are made. If only three are
available, the position of the vehicle can still be determined, but not
uniquely, and it cannot be expressed quite so directly as before.

The modification to the basic procedure necessary when only three measure-
ments are available will be developed using the example of two given reference
points. Range to these points and altitude will be the measurements made.

Sketch (b) illustrates the situation.

0 r r The reference points P; and P, are
. located by the known vectors x; and x,
with respect to point of origin. The
vehicle is located at R by the vector
r. The vectors 1, and 7, locate R
relative to the reference points. The
lengths of x; and x,, namely §&; and
£,, are known. The lengths of 7,, Z,,
and T, namely X;, A,, and p, are mea-
sured simultaneously.

The two vectors xj and X; by

Py themselves do not form a basis for spec-
ifying the position of the vehicle.
Sketch (b) They can be used to generate the third

vector x3 and thus produce a triplet
of independent vectors x. The vector x3 is constructed from the cross
product of x; and xj:



(x1) x (x2)

= (13)
Ix;) = (xpl

X

Since the denominator in equation (13) is the magnitude of the numerator, the
vector x3 has unit length.

Equations (1) through (4) hold:

r=a'x = we €8]

x = Tc (2)

atT = wt 5 w = Tta (3)
- --t

r « X =2xx a = Ga (4)

The two quantities o and n are defined for convenience by

at = (r « X3, T - X5) (13a)

t
n

(a1, az) (13b)

Then equation (4) can be written
o F 0 n
= = (14)
T - X3 0 1 ag

X1 X1 X) * Xp

o]
~

where F 1dis given by

= F (15)
X9 - X7 X9 -« Xo

i
1l

The following equation comes directly from equation (14):

n=Fla (16)

Neither r . xj3 nor ag is known directly. Either can be calculated by
considering r . r:

F Ol n
r .1 =p2= atxxta = [nt, as] (17)
0 1]las



Hence, follow the equations

az2 = p2 - n"Fn

-1
02 - atF o

or
t.-1

172
az = £[p2 - o F ‘a]

(18)

Since the correct sign must be chosen for a3 in equation (18), the solution
is not unique. The choice of sign means that R could be at either of two
places located symmetrically with respect to the plane formed by the vectors
x; and X,.

Equation (18) completes the information required for position determina-
tion. The steps are, in summary:

-1

n=F "a (16)
az = *[p? - atF_lu]l/Z (18)
w = Tta (3)

Whereas equation (8) expresses w directly in terms of the measurements in
r - X, equations (16), (18), and (3) form an indirect expression, requiring
calculations of intermediate quantities.

If r - x; and r - x, are measured at different times, equation (16)
changes to the form

where

and

CONSTRUCTION OF PROJECTION VECTORS FOR VARIOUS NAVIGATION SYSTEMS

An important advantage of this formalism is that different types of
measurements affect only the method of constructing the projection vector, a
component of which is expressed in equation (5). Once the equations that
relate the projection vector and the measurements are known, the basic proce-
dure or its modification can be applied to solve all position determination
problems. In the previous section, p and » were the measured quantities in
the projection. This section is concerned with constructing the projection
when other types of measurements are used.
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The following list classifies navigation systems according to the type of
measurements provided to construct the projection:

1. Altitude, and any combination of two or three range or angle
measurements.

2. Four independent range measurements.
3. One altitude and three distance difference measurements.
4. One altitude and two distance difference measurements.

5. Three independent range measurements, where the plane containing the
reference points either (a) does not contain the origin, or (b) does contain

the origin.

Calculating the projection vector from the data of each of these systems
will be shown in the order listed.

Projection Using Angle Measurements

Equation (5) expresses the projection vector in terms of the known
altitude p and £ and the range, A. It will now be shown how an angle measure-

ment can be substituted for range. Sketch (cl) shows that the equation
r - 7 = x holds. Taking the dot product of x

with itself and rearranging terms give the
equations

A2 - 20Ac(90° + 0) + p2 - £2

o
i

(19a)
A2 + 2pxs8 + p? - E2

where 6, the angle between the horizon and the
line of sight, is considered positive if the
reference point, P, lies above the horizon. Solv-
ing equation (19a) for X gives

A= -pse +[(ps6)? + (£2 - 02)]1/2 (19b)

Sketch (cl) Note that X, being a length, must always be posi-
tive. To choose the correct sign in equation (19b)

one must consider the two cases & > p and & < p. Considering first the con-
dition & > p, it will be shown that

A = -psb + [(ps8)2 + (£2 - p2)]Y/2 (19¢)

10



both for © > 0 and for 6 < 0. It can be seen from sketch (c2) that the
following relations hold:

QR = psH = -pso! since 8' < 0

PQ = P'Q = /g2 - (pcB)?

= [es9)” + (&2 - o9

PR = PQ - QR = -ps6 + /0359)2 + (82 - p2)
P'R=P'Q+ QR
= -psO' + ,/(psG')Z + (82 - pz) (20) Sketch (c2)

In both cases where 6 > 0 or 6 < 0, equation (20) is the required solution
for XA for the condition & > p. If, on the other hand, £ < p, then there
are two possible solutions for X. Sketch (c3) and equation (20) show that
the following relations hold:

QR

lose| = -pse since 6 < 0

PR = QR - PQ = -ps6 - [(ps6)2 + (£2 - p2)

O

PR = QR + P'Q = -pso + /(ps8)2 + (£2 - p2)
Therefore, there are two possible solutions:

A= 06 + [(ps8)2 + (E2 - p2)]%/32

A = -ps8 - [(0s8)2 + (£2 - p2)]1/2

To know which solution to choose under the
condition £ < p Trequires additional
information. Sketch (c3)

To calculate the projection vector in terms of angle measurements one can
""dot" through the equation r - 7 = x withr to get T - X = p%2 - pAs6. Then
using equation (19b) gives

r - x = p2ch tpsB(E2 - p2c29)1/ 2 (21)

After the proper sign in the equation is selected, equation (21) is a variation
in form of equation (5). Specifically, the equation that relates the kth

11



component of the projection vector and its corresponding angle measurement is
given by
2 2 _ 2 1/2
p2cOy + ps6, [E = - p=cO ]
(r - x) = (5a)
2 2 1/2
P Cek - psek[gk - P Cek]

Projection Using Four Independent Range Measurements

When measurements of range are given with respect to four independent
reference points, the following procedure can be used to calculate the projec-
tion vector. Let x;, X,, X3, and x;, be the position vector of the four
reference points relative to a common origin. One of them, say x,, can be
written as a linear combination of the other three;

Xy = le + B

1 * By, =B X =Xx8 (22)

2%2 3
Since all the x's are known, the B's are also known. The problem is to
eliminate the unknown altitude, p, from the expression for the projection.
Now equation (1) relates the vehicle's position to three reference points by

the expression r = atx. The projection onto x, then is given by

where equation (4) has been used. This equation can be expanded by means of
equation (5) to give

t
p2 + &;12 _ }\12 Bl
p2 + £,% - )\22 Bo| = p?% + €4+2 - >\L+2 (23a)

The solution of this equation for p? is

02 = [MZ -6 28 (52 - Aiz)]/(l - X8;) (23b)
i i

The denominator of equation (23b) cannot be zero so long as the four reference
points do not lie on a plane. After p? is determined from equation (23b)
all the quantities in the right side of equation (5) are known and the projec-
tion vector is completely specified.

12



Projection Using Altitude and Three Distance Difference Measurements

Distance-difference measurements arise in using hyperbolic intersection
methods of navigation such as Loran C. Sketch (d) shows the point R to be
determined and four reference stations P; through
P,. These known points are at positions x;
through x, from an origin. A constant difference
in distance of R from two reference stations
gives the locus of a hyperbola. This difference
is determined by measuring the time difference
between pulses from each station. The length A
of the vector to the first reference of any pair of
stations is not known. Only the difference in
their distances is known. With P; as the primary
references, sketch (d) illustrates the following
relations between the vehicle at R and four

Sketch (d) known stations:
>\1=>\
Ay = Ay + by
> (24)
Ag = Ayt b,
Ay = xl + b3

As in equation (22) of the previous section, X, can be written in terms of
the other vectors

Xy = ByXy * ByX, * BiX,

where the B's are known. Equation (23a) results. Substituting for the Xj's
by equation (24) and expanding gives the following quadratic equation for A:

>\2<Z:si - 1) + 2X(B,b; + Byb, - by) +ZBi(p2 + giZ) - (% + £,%)
1 i

+ b12 + b22 + b32 =0 (25)
After X 1is computed from equation (25), then equation (24) can be used to
compute Aj;, Ap, and Az. Therefore, all quantities in the right side of
equation (5) are known and so is the projection vector.

Projection Using Altitude and Two Distance Differences

If one altitude and two distance differences are known, the equation for
A becomes a quartic. Two solutions are possible; the proper one must be

13



selected. The equation to be solved is

p2 + EIZ _ Alz p2 + 512 _ Alz
1 -1
p2 = 7l p? + €7 - (0 + bIZLGT | 02+ £)2 - (0 + B)? (26)
p2 + ggz - (A # b2)2 p2 + 532 - (A + b2)2

Equation (26) comes from equations (1) and (4) and taking a dot product

1

r.r=a%.x% = a‘Ga = (r - i)t(G-l)tGG_ (r - x)
= (r - i)tG—l(r . X)
With the measured quantities p, by, and by, and the notation gf% for
the ijth element of G and defining the matrix P as 1)
2 2
pe + &

P = p2 + 522 _ b12

02 + £,2 - b22

equation (26) can be written as the quartic

-1 -1 -1
o 821 8y Bp3
A2 g, - 4x3[b,,b,] P
ij -1 -1 -1
31 832 833
-1 -1
8, 823 |21
-1 -1 -1
1 1 1
835  E33f [Pz
-1 -1 -1
81 B3y 833 .
- 4x[b;,b,] P+ PG P-4p2=0 (27)
_1 -1 -1

€31 83, 833

Computation of the coefficients for equation (27), although tedious by
hand, requires a simple digital computer program involving only matrix

14



multiplication and basic arithmetic operations. After the coefficients are
computed, methods, such as Ferrari's or Descarte's are available for extract-
ing the required root for equation (27). Again after A 1is computed from
equation (27), the first three expressions in equation (24) can be applied to
compute X3, A,, and A3z. This computation completely specifies all quantities
in the right side of equation (5).

Projection Using Three Independent Range Measurements

Two cases will be considered here. In the first, the reference points
form a plane that does not contain the origin. The three range measurements
A1, Ao, and A3 are given, and p 1is to be determined. Then equation (26)
can be expanded to give the following biquadratic in p:

2 2
€17 - M
4 -1 2 -1 -1 -1 2 2
PTR8 2Pt 208y 208, » 2583 €27 - A7t 2
i1 i i i )
J g32 _ A3Z
t
2 2 2 2
£17 - M €19 - M
-1
g2 - 2,206 g2 -2,2)=0 (28)
2 2 2 _ 4 2
E3° 7 A3 s Aj

In the second case, three range measurements are made again and p 1is to
be determined, but this time the plane formed by the reference points does con-
tain the origin. This development is similar to that in the section labeled
"Indirect Expression'' wherein the reference vectors were not linearly indepen-
dent. In the present case, only two of the reference vectors are independent.
Expressing the third in terms of the first two gives the expression

t
X3 = (81,82)(X1,X2)

Following the arguments used in deriving equation (23a) gives the following
expression for the projection of r along Xxj:

t
[(% + &% = %), (0% + £,% - 3,2)][81,8,]7 = 02 + €52 - 232

Solving this equation for p? gives

p? = [Eﬁi(éiz - 02 - (5% - Af)]/(l —Zsi> i=1, 2 (29)
1 1
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Since the reference points are not colinear, the denominator of equation (29)
is not zero. Again, equation (29) can be used to compute p2. Once p? is
known, the right side of equation (5) and thus the projection vector is
completely specified.

Table 1 summarizes all typical coordinate-determination problems and
their corresponding solutiom.

TABLE 1.- TYPICAL COORDINATE-DETERMINATION PROBLEMS

Given set of measurements Number of Brief description of
solutions solution
One altitude measurement and 1 Direct expression
(a) 3 independent ranges Use equations (5) and
(b) 2 independent ranges and 1 angle (21) to construct the
(c) 1 independent range and 2 angles projection vector
(d) 3 independent angle measurements o
Four independent range measurements or 1 Direct expression
(a) 3 independent ranges and 1 angle Use equation (23b) to
(b) 2 independent ranges and 2 angles solve for p2? and use
(c) 1 independent range and 3 angles equations (21) and (5)

to solve variations of
this problem

One altitude and

(a) 3 distance differences 1 Direct expression
(b) 3 distance sums Use equation (25) to
(c) 2 distance sums, 1 distance solve for A2
difference
(d) 1 distance sum, 2 distance
differences

Also other combinations of distance
difference, distance sum, and range

rate
Three independent ranges 2 Direct expression
(a) 2 ranges, 1 angle Use equation (28) to
(b) 1 range, 2 angles solve for p2, and
equation (21) for
variation of this
problem
One altitude and 2 Direct expression
{(a) 2 distance differences Use equation (27) to
(b) 1 distance difference, 1 distance solve for A2
sum
(¢) 2 distance sums
Also other combinations of distance sum,
distance difference, and range rate
One altitude and 2 Indirect expression

{(a) 2 ranges
(b) 1 range, 1 angle
(c) 2 angles
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RELATION BETWEEN COVARIANCES OF NAVIGATION AND MEASUREMENT ERRORS

The procedure developed in the preceding sections converts measured
quantities into the quantities desired for navigation by means of a transfor-
mation whose terms are already known. Since the procedure separates the mea-
surements and the transformation, it also separates measurement errors from
the particular geometry summarized by the transformation. The separation will
be shown in this section wherein expressions for the navigation errors and
their covariances will be related to measurement errors and their covariances.

Error Covariance Matrix

The objective here is to show that error of the computed coordinates is a
linear transformation of the errors in the measured quantities. Furthermore,
the error covariance matrix of the computed coordinates is also some linear
combination of the error covariance of .the measured quantities. The relation
between errors in computed coordinates and errors in measured quantities for
the one altitude and three range measurements case will be derived. Assuming
that the position of the reference points is completely known, we may take
the partial derivatives of the computed coordinates in equation (8) with
respect to the measured quantities as follows:

S _
>t A A
n ]_J
j
-1 -
dw = thj pdp - T L A, da, (30a)
j
DI Ay dA
3 3] | 3 3

Next, we define the following two matrices

— _1 T
DI
~ 1]
)
J =12t 7! (30b)
~ "2j
]
-1
Zt3J'
| J .
m = (p do, -xy dA;, =X, di,, -X5 dxy) (30c)

Equation (30a) may be rewritten in terms of the two matrices defined in equa-
tions (30b) and (30c) as

dw = Jm (30d)
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The error of computed coordinates, therefore, is a linear transformation of m,
the product of the measured quantities and the error in measurement of the
corresponding quantity. The linear transformation matrix J depends only on

the location of the reference points. By virtue of equation (30d), the

covariance matrix of the computed coordinates is

cov({dw) = J cov(m)Jt

(30e)

In many coordinate determination problems, the desired coordinates are lati-
tude and longitude. Then the rectangular coordinates must be converted into
polar coordinates. For the direct expression, if the c¢-vectors are chosen
such that c¢;, c¢3 are vectors from the center of the earth to Greenwich and
to the North Pole, respectively, then the longitude and latitude of the air-

craft position are, respectively,

W

A tan"! — A tan”! 2
= an —_— s =
W
T 1 r (w12 + w22)1/2
The error in computed latitude and longitude is
[ i
cos Xr -sin Ar
dxr 0
2 2 2 2
Wttt W, VAT
= dw
an -Wy sin Ar -w, cos Xr wl2 + w22
T
p2 p2 p2 |
Again, we define the matrix L
cOs A -sin A ]
T T 0
2 2 2 2
Jw oo+ W, /w1 W,
L =
-w3 sin A -w, COS A Jw. 2+ w2
T 3 T 1 2
[ p? o? p?

Next, we write equation (32) in terms of equations (30b) and (33)

dx
T

= LJm
dA
T.
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The error covariance matrix for the computed latitude and longitude are
related to the error covariance matrix of the measured quantities in the fol-

lowing expression

dX
T

cov = LI covim)JrLt (35)
dn_

It is to be emphasized that matrix J in equations (30d), (30e), (34), and
(35) depends only on the location of the reference points and that the matrix
L in equations (34) and (35), which becomes singular at both the north and
south poles, depends on aircraft position. : '

The relation between the errors of computed coordinates and the errors of
measured quantities will be derived for the indirect expression. First, write
equation (3) in component form in light of equations . (16), (13a), and (5) and
as follows: '

@1 -1 0 TocoXy
t t
w=T a, |} = T 0 r X,
| 33 0 0 1 a,
[ 2 2 . 2
F 0 lfps + gl )\1.
_ ot 2 2 _ 4 2
=T 0 llps + Ez AZ
| O 0 1 ag (36)

Second, take the partial derivatives of the computed Cartesian coordinate in
equation (36) with respect to the measured quantities

[ T ar n
~"1] p dp
J

t -1 -1
dw = T };:Ezj F -y dry (37)

j

1 - a; - a, -a, -a,

-x, dA,

8.3 a3 3.3

b - —

Next we define the matrices
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[ T
J F-l
K= 2ft (38a)
™ 2]
J
1 - a, - a, -a, -a,
[ 23 a3 as |

Then upon substituting equations (38a and b) into equation (37), we have

dw = T km' (39)

As exhibited by equation (39), the error of the computed coordinates is
again a linear transformation of errors in measured quantities. However, in
this indirect expression case, the linear transformation matrix depends on
both the location of the reference points and on the position of the aircraft.
The covariance matrix of the computed coordinates is

cov{dw) = TtK cov(m')KtT

To express the computed coordinates for the indirect case in latitude and
longitude, choose c¢; as the vector pointing from the center of the earth to
the intersection of the orbital plane with the equatorial plane so that the
longitudinal distance from Greenwich and the projection of c¢; on the surface
of the Earth is no greater than 180°. Choose c3 as in the direct expression
case. Then the latitude and longitude of the aircraft are, respectively,

-1 2
= + —_—
Ar Acl tan W
W
- 3
Ar = tan 1 -
w2 o+ w,?

1 2

The errors in computed longitude and latitude are related to the errors in

measurements as
A
T t
d[A ] = LT Km'
T

The covariance matrix of the computed coordinates is given by

dA
cov| T = LTtK cov(m')KtTLt

dAr'
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CONCLUSION

The coordinates of the position of a vehicle, say an aircraft, can be
determined by a matrix multiplication of the projection vectors comstructed
from measurements. Measurements may be range, range rate, angle, distance
difference, etc., and methods for construction of the projection vector from
typical combinations of measurements were presented. The matrix displaying
the coordinates by a linear transformation of the projection vector depends
on the reference points from which the measurements were made. Since the
position of the reference points is already known, this matrix is
precomputable.

The basic procedure developed for coordinate determination assumes that
measurements were made essentially at the same time and that the set of mea-
surements is sufficient to determine the vehicle position uniquely. The
scheme also works for nonsimultaneous measurements, provided a component is
added in the projection vector to account for motions of the vehicle between
measurements. If the set of measurements is insufficient to determine the
position uniquely, then the procedure can determine the position to within a
choice of sign.

The advantages of this technique are: (1) it is applicable to any com-
bination of different types of measurements; (2) the measurements and the
transformation are separated and related by a linear transformation; (3) the
error in computed coordinates and that in measured quantities are separated
and related by another linear transformation; (4) the covariance matrix of
the computed coordinates and that of the measurements are also separated and
related by some variation of the linear transformation in (3); and (5) the
transformation in (2) is already known and is therefore precomputable.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035, April 9, 1971
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